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Model Systems with Random Coefficients 

Two-Species Model System with Bidirectional Causality 

 We generalize the simple model system consisting of 2 coupled logistic difference 

equations as follows: 

x(t+1) = x(t) [Rx – Rx x(t) – Axy y(t)] 
 [Eq. S1] 
y(t+1) = y(t) [Ry – Ry y(t) – Ayx x(t-τd)] 

where τd is the time delay for the effect of x on y. For each simulation run, we sample a new 

fixed value for the growth rates Rx and Ry from the uniform distribution (3.7, 3.9), as well as new 

values for the interaction coefficients Axy and Ayx from the uniform distribution (0.05, 0.1). In 

addition each simulation is initialized with random starting points with x(1) and y(1) drawn from 

the uniform distribution (0.01, 0.99), and run for 3000 time steps. For each of the different values 

for the time delay: τd = 0, τd = 2, and τd = 4, we ran a total of 500 simulations (when populations 

reached negative values or increased beyond carrying capacity, we sampled new coefficients and 

re-ran the simulation). Using extended CCM, we analyze each simulation using E = 2, τ = 1, 

selecting a random library of 200 vectors over time points 101-2000, and computing cross map 

skill for time points 2001-3000. 

 The results are depicted in Figure S1, with boxplots for the value of the cross map lag (l) 

that gives the highest cross map skill (ρ). Because nearly all simulations had identical values for 

the optimal cross map lag (l), the boxplots are depicted as straight lines with just a few outliers. 

As expected, “y xmap x” (red), depicting the causal effect of y on x has an optimal cross map lag 

of l = -1, because the y affects x with a lag of 1 time step (y(t) influences x(t+1)). Conversely, the 

optimal cross map lag for “x xmap y” (blue) changes depending on τd; this is also expected since 

τd describes the time delay in the response of y to x. In fact, the optimal cross map lag for “x 
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xmap y” appears to accurately recover the time delay parameter τd: for example, the optimal l is 

nearly always -3 when τd = 2 (meaning x(t) influences y(t+3) and therefore it takes 3 time steps 

for y to respond to x). 

Two-Species Model System with Synchrony 

 We also generalize the modified form of the above system that produces synchrony with 

strong forcing from x to y only: 

x(t+1) = x(t) [Rx – Rx x(t)] 
 [Eq. S2] 
y(t+1) = y(t) [Ry – Ry y(t) – Ayx x(t)] 

For each simulation, Rx is sampled from the uniform distribution (3.7, 3.9), Ry is sampled from 

the uniform distribution (2.5, 3.2), and Ayx is sampled from the uniform distribution (0.7, 0.9). As 

above, the system is initialized with random starting points with x(1) and y(1) drawn from the 

uniform distribution (0.01, 0.99), and run for 3000 time steps. We ran a total of 500 simulations 

(when populations reached negative values or increased beyond carrying capacity, we sampled 

new coefficients and re-ran the simulation). Using extended CCM, we analyze each simulation 

using E = 2, τ = 1, selecting a random library of 200 vectors over time points 101-2000, and 

computing cross map skill for time points 2001-3000. 

 Results for the “generalized synchrony” model are shown in Figure S2, with boxplots 

showing the value of the cross map lag (l) that gives the highest cross map skill (ρ). Again, we 

see that the optimal cross map lag (l) is generally negative in the direction of true causality (red, 

“y xmap x”) and positive in the direction of synchrony (blue, “x xmap y”).  

Four-Species Model System 

 To test the robustness of extended CCM in distinguishing between direct and indirect 

causality, we generalize the 4-species model system with a transitive causal chain: 
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y1(t+1) = y1(t) [R1 – R1 y1(t)] 

y2(t+1) = y2(t) [R2 – A21 y1(t) – R2 y2(t)] 
 [Eq. S3] 
y3(t+1) = y3(t) [R3 – A32 y2(t) – R3 y3(t)] 

y4(t+1) = y4(t) [R4 – A43 y3(t) – R4 y4(t)] 

For each simulation, the growth parameters are sampled as follows: R1 is drawn from the 

uniform distribution (3.8, 4.0), R2 and R3 are both drawn from the uniform distribution (3.5, 3.7), 

and R4 is drawn from the uniform distribution (3.7, 3.9). The interaction parameters A21, A32, and 

A43 are all drawn from the uniform distribution (0.3, 0.5). As above, the system is initialized with 

random starting points with each yi(1) drawn from the uniform distribution (0.01, 0.99), and run 

for 3000 time steps. We ran a total of 500 simulations (when populations reached negative values 

or increased beyond carrying capacity, we sampled new coefficients and re-ran the simulation). 

Using extended CCM, we analyze each simulation using E = 4, τ = 1, selecting a random library 

of 200 vectors over time points 101-2000, and computing cross map skill for time points 2001-

3000. 

 Results for this analysis are shown in Figure S3, with bagplots (1) depicting the bivariate 

boxplots for the optimal cross map lags (l) and corresponding cross map skill (ρ). As in Figure 3, 

the top row of panel b shows that the optimal cross map lags are close to 0 and show high cross 

map skill, as would be expected for these direct interactions. In contrast, the indirect interactions 

generally have optimal cross map lags that are more negative, and lower cross map skill, with the 

most indirect interaction (from y1 to y4, identified using y4 xmap y1) showing the most negative 

cross map lag and the lowest cross map skill. We note that the variance in cross map skill is quite 

high, indicating that it may not be as useful in separating direct from indirect interactions in real 

systems, whereas cross map lag shows clearer separation.  
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Figures 

 

Figure 1 — Robustness of extended CCM in the 2-species logistic model with bidirectional 

forcing. 

Boxplots of optimal cross map lag (l) are shown for 500 random simulations of the 2-species 

logistic model with bidirectional causality and with three different time delays, τd. Except for a 

few outliers, the optimal cross map lag when using x to cross map y (blue, “x xmap y”) is -1, as 

would be expected, because x responds to y within a single time step. In the opposite direction, a 

larger time delay (τd) in the effect of x on y results in larger negative values for the optimal cross 

map lag when using y to cross map x (red, “y xmap x”). 
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Figure 2 — Robustness of extended CCM in the 2-species logistic model with generalized 

synchrony. 

Boxplots of optimal cross map lag (l) are shown for 500 random simulations of the 2-species 

logistic model with unidirectional causality producing generalized synchrony. Except for a few 

outliers, the optimal cross map lag when using y to cross map x (red, “y xmap x”) is negative, and 

positive in the opposite direction (blue, “x xmap y”). This is expected, because x has a true causal 

influence on future values of y, mean y is better at cross mapping to past values of x; conversely, 

the lack of an actual effect of y on x, but rather “generalized synchrony” means that x is better at 

cross mapping future values of y. 
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Figure 3 — Robustness of extended CCM for distinguishing direct and indirect causality in a 

transitive causal chain. 

(A) In this system, y1 causes y2 causes y3 causes y4 such that indirect causation from y1 to y3, y2 to 

y4, and y1 to y4 occurs. (B) Bagplots show the optimal cross map lag (l) and corresponding cross 

map skill (ρ) for 500 random simulations of this system. The white central area depicts the 95% 

confidence interval for the median value, while the darker colored region is the “bag” containing 

the central 50% of points (i.e., similar to an interquartile range), and the lighter colored region is 
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the loop with area 3 times the size of the bag, as described in (1). The direct links (top row) are 

strongest with the highest cross map skill and the most immediate effects (l ~ -2), while the 

indirect links separated by one node (middle row) have moderate cross map skill and somewhat 

delayed effects (l ~ -4), and the indirect link from y1 to y4 (bottom row) is the weakest and with 

the longest time delay (l ~ -6). 


